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1. INTRODUCTION
The investigation has proceded along three directions. First,

the topological characteristics of the matrix A in the equation

]
I
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have been studied in a search for parameters which would be described in
the discrete topology of AT and which could be traced through the succes-

sive transformations:

A summary is given in Section 2 of the results to date.
. T T,,~1 . e

Next, the properties of A, A"A, and (A"A) as continuous (infinite)

matrices have been studied with an eye to relating the maxima and minima
T T, -1 . . . . L

of A to those of A"A and (A"A) ~. This work is summarized in Section 3.

Finally, studies have been made of known procedures to see if
these can be modified or new approaches found which will give solutions in
a smaller number of steps. This work has led to derivation of two iterative
procedures which are so different from each other that they are discussed

separately in Sections 4 and 5. Section 6 is a bibliography supplementing

that submitted with the proposal.




2. MATRIX TOPOLOGY

A study of the literature on the topology of matrices has not
shown any results of particular use in the solution of large matrixes
other than for reducing or separating matrices into decoupled submatrices.
(Two submatrices are called "decoupled" if they do not contain index num-
bers in common.) A "decoupling tenscr' can be defined which acts to
transform an nxm matrix into a block diagonal square matrix nxn, but it
does not seem to have much theoretical interest. Of more interest are a

pair of parameters, which I call coupling factors, Czj and CEV, which are

defined by:
T e
(’ij = 212 u (aik,ajk) ,
where
I, v = 0
u(z) =
0, v # 0
and
C _ ——
€y = 2 (ayis ay)

These parameters are defined for reciangular as well as square matrices.
They are invariant under permutation transformations and under a number

. . . r c . .
of other operations. Certain functions of Cii and Cij are invariant under

the transformation:

ATA
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and it is hoped that they can be traced further into (ATA) . They
can be shown to be related to auto- and cross-correlation factors de-

fined on continuous matrices.

where nk1 is an element of:

and bij is an element of:

There is a path onen for connecting the error € in N through:

to the error Ab in b and to the coupling factors, either in the discrete
case or in the continuous care or perhaps both.

Attention is being paid to the possibility connecting the coupling
factors to Betti numbers and such like other topological parameters. They
can be related to graphs and hence to incidence matrices, but the extent

to which such relationships can be used is not known.




3. HANDLING LARGE MATRICES AS CONTINUOUS FUNCTIONS

This is an investigation of the possiblities of developing
procedures analogous to matrix and vector product methods for piece-wise
continuous functions of two variables. For this purpose the theory of
convolution quotients will be used, since it gives a systematic way of
dealing with the unit that must be used in an algebra where the products
correspond to integrals. This theory is presented in "Operational Calcu-
lus and Generalized Functions: by Arthur Erdelyi, and is briefly given
as follows.

A ring is defined whose elements are continuous functions of a
non-negative real variable. Addition is defined as usual, but multipli-

-(1),

cation 1s defined as concolution: i.e.,
(’t
fRg(t) = o f (t-u) g(u) du .

This multiplication is distributive, (with respect to Scalars) commutative,
and associative. This ring C is then extended to a field F, much in the
same way that the ring of integers is extended to the field of rationals,
that is to say that pairs of elements of the ring are regarded as elements

.

of the new field. (More precisely, equivalence scte of pairs are the elements
in the same way that 6/9 and 4/6 are equivalent to each other, and the equi-

valence class containing them is represented by 2/3.) The pair (f,g) is

equivalent to (a,b) if:

a*d = b*c



in the convolution sense. The equivalence class containing these is
written a/b (or f/g). It can be shown that the field F (of convolution
quotients) is a vector space and that it contains (in the sense of
isomorphism) the real and complex numbers, the continuous functions in C,
the (equivalence classes of) locally integratable functions, and the so-
called impulse functions, one of which serves as the previous mentioned
unit under convolution. This unit must correspond to the unit matrix.

The operations defined in the field F are:

_ a*d + b*c | a
=T G

ol

= 22y L2y &y o Ak
) = D)5 ) Q= G -

aln

In the cases we wish to pursue, the function is to be zero for
all values of the arguments larger than a fixed number, probably 1; and
consequently the convolutions can be regarded as, in the integral case,
as regular intergrals with one of the factors, the mirror image of
the function at issue. In the vector case this will entail dot products
with vectors '"put in backwards". Due to the nature of the convolution

integral:

qu f (t=u) g(u) du = h (t)

the function (t-u) cannot be regarded as an arbitrarily chosen function
of t and u, nor is the result h (t) strictly analogous to a dot product.
With the interpretation of t as a constant (analogous to the size of the

matrix problem in question) we get an analogue for the dot product. All



the theory of convolution quotients holds for this interpretation, and

| in particular, the theory of convergence of convolution quotients, which
is a generalization of the theory for scalars and of uniform convergence
of continuous functions. That is, if a sequence of continuous functions
converges uniformly on an interval in the usual sense, then they will

converge in the convolution sense. (cf - Erdelyi, ref. 4)

lim - /oo
{n £ (nt)/J (f(n) du] d~> 1 ,
“ lo}

h—)oo
where 1 is the unit under convolution or as it is sometimes called, the
delta function. Notice the above functions do not converge uniformly in
the usual sense.

In order to extend this analogy to the matrix case, it is neces-

sary to examine the integrals of functions of two variables,

fo

4=0 f(x,h) g(u,y) du = h(x,y) .

For this we enlist the thecory of integral equations of the first kind, and
of Green's functions. (cf - Morse and Feshbach Sec. 8.3, ref. 3)
Transition from integrals to scalar products can be approximated

with the formula:

(an+1
lim o - . a .
, i ]. ! i (2].) n n+l 21+l
f(x) dx = | e ' f la _-a )
anJ i ]'.Z=0 . (2i+1) j L 2 } n+l “n



4, AN ITERATIVE SCHEME OF THE PROJECTION TYPE
This section deals with two matrix iterative methods which we
believe to be original. The methods are projective, like tyose of Kacmarg
and Cimmeno (see ref. 2), but are based on a non-standard geometric inter-
pretation of a system of linear equations. The first method and its vari-
ants are iterative, while the second method is iterative direct, like that
of conjugate gradients. Both ideas are in rough form and are in the process
of being modified. There has been a limited amount of numerical testing.
The geometric picture arises by inverting the usual concept of
solution spaces intersecting a point which solves the system. Instead,
we have an "equation'" space, a certain element of which can be easily modi-
fied to give the solution.

Let the system be:

BX
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where

B has rows B,,..., B
i n

"
1l

(xj) is the solution, and

(@]
]

(cj) is the constant vector.

Divide each equation.

1
@}

B.X 1
1



by Ci' If Ci is zero, simply add another equation whose constant is
non-zero to (1) before dividing.

The new system is where A has rows

Ay = Bi/Cy >
and -
1_]
p = !

The rows of A can be thought of as n points in n space which define an n-h

dimensional hyperplane H (if A has rank n, then k = 1). A point U of H is

defined by:
U= (Z oy Ai) X
=7 q, .
i
=1

Thus, any n points in H correspond to an nxn matrix M, say, such that

MK = 1, If the pointe are vertices of a convex set, them M is non-singular.

T

Let P be the point in H such that the vector P is normal to H.

Every row Ai of A can be expressed as:

A, =P+ S, s
i i



where Si is a vector in H. We have Ai P=P for all i.

In matrix form,

thus, = p/p? .

>
|

The first method proceeds as follows. We choose some initial
approximation Xo (Example: the bary center of the Ai) and some initial

point Ak' The line
U= Ak + 8 (XO—Ak) (3)

obviously has in H. We wish to find the point U closest to P. Since

this point is also closest to the origin we have:

U (Xo_Ak) = 8
81 = A (X -A)/(X -A)7 (4)
Xy = Ak + 6y (XO—Ak) (5)

8 cannot be 1 for all Ai' If it were, then all vectors XO—Ai would be
normal to XO—P. Thus, all points Ai would be continued in an n~h-1 dimen-

sional subspace, which is impossible because H has dimension h-k.

-9 -



To continue, we repeat the process with a new Ai to get X,
and so on until we have used all of the Ai' Then we. start over and con-
tinue until the desired accuracy is achieved. Since quantities from
i through 1 iteration can be used, the number of multiplications in the
ith iteration is 2n,

The process converges for each test matrix used including 2
singular ones.

For a variation of the method Xi can be minimized as a function

of Xi This process also requires 2n multiplications per iteration,

-1°

i.e. to compute Xi— Xi is then computed so as to minimize Xi In

1 +1°

each case tested there was improvement, sometimes considerable, over the

2 more multiplications and

first process. However, initializing requires n
another column of storage. In general, Xi can be minimized as a function
of the proceding k approximations. An additional kn? multiplication to
initialize the k columns of storage are required over the first process.
These further refinements were not tested.

For the iterative direct process we proceed as follows. Assume
that A is non~-singular. Choose Hk which is closest to P, i.e., has
minimum length. Choose Ae such that, using Aa as Xo’ the point X; is
closer Lo P than for other Ai. We will iteratively '"correct" the vector
G = Ah—A2 until it has the same direction as P—Ak.

Any point U in the n-2 dimensional hyperplane containing Ak

whose normal is P—Ak satisfies

AU = Ai . (6)



If we set

Ui = Ai + ei (Ai—AR) s
and choose ei so that Ui satisfies (6), then we can project the Ai exclu-
sive of Ak and AQ onto the hvperplane. Thus, we have n-1 points in a n-2

dimensional hyperplane. We can form a basis, say Vi, V2,...,Vn_ which

2)
can be orthogonalized one vector at a time. If the new basis is Alyeeesd
then we can make G orthogonal to it by well known formulas. We can create

the a, one at a time and correct G each. Once G is corrected, then obviously

3 multipli-

P lies on the line U=Ak+6G. The process requires on the order of n
cations, However, the first iteration requires only 6n multiplications, the
second 7n, the third 9n, and so on adding 2n each time. The last iteration
requires about 2n? multiplications. Thus, most of the work is concentrated
in the last few iterations. This may be an advantage over the method of

conjugate gradients, which requires n? multiplications for each iteration.

Numerical experience shows that the method does provide an exact solution.



5. AN ITERATIVE SCHEME OF THE SEPARATION TYPE

The standard relaxation method can be written as:

Lot (n)

n

- -1
! x(n+1) (w =1-w D U) Ac
n n

-1
D + wnD y (1)

where D, U, and L are the strictly diagonal, upperdiagonal, and lower

diagonal components of the nxn (not necessarily symmetric) matrix B. w

is the relaxation factor appropriate to the nth

step, and distinguishes
the various common relaxation methods. E.g, for w = 1, equation 5.1
characterizes the Gauss Seedel method while for w = a constant >1, or <1
we have the over-relaxation or under relaxation method, respectively.

Now the over relazation method can be shown (ref. ) to give
very rapid convergence, on the average and after a very large number of
steps, for certain types of B matrix, and in fact for some types of B
matrix it converges faster than any other iterative procedure. It does
not converge faster for many types of matrices and in fact, even for B
matrices of the type mentioned it may often converge more slowly than
other methods for the first few steps. A procedure called the Chebychev
semi~-terative method (ref. 1) gives rapid local convergence for may types
of B matrix but suffers from a number cf disadvantages, one of which is
the requirement that the spectral radius of B be known, at least approxi-

mately. To avoid these difficulties and to get still more rapid conver-

gence, a method which requires no knowledge of B's eigen values and which

makes fullest use of available information is being studied. The prototype
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